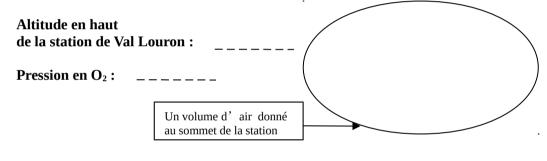
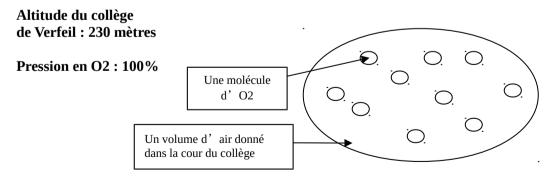
Exercice: Les effets de l'altitude sur notre organisme


Altitude	Pression	Sommets	
en mètre	Oxygène	connus	
9000 m	30%	Everest	
8000 m	35%	Cho-Oyu	
7000 m	40%	Acongagua	
6000 m	45%	Kilimanjaro	
5000 m	50%	Mont Blanc	
4000 m	60%	Cervin	
3000 m	70%	Aiguille	
	-	rouge	
2150 m	80%	Cela signifie que pour un volume d'air	
1000 m	90% (donné, 100% des molécules de dioxygène	
0 m	100%	sont présentes	


Document 1: Tableau de la pression en O₂

Document 2 : Plan des pistes de la station de Val Louron.

- 1. A partir des données du document 1, **coche** la ou les bonne(s) réponse(s)
- a. En altitude:
- o La pression en O₂ augmente
- La pression en O₂ diminue.
- b. En altitude, pour un même volume d'air donné:
- o Les molécules d'O2 sont plus nombreuses
- Les molécules d'O2 sont moins nombreuses
- o Le nombre de molécules d'O2 reste constant.
- 2. **Complète** ce schéma à l'aide des documents 1 et 2 ci-contre **et représente** les molécules de dioxygène présentes dans l'air au sommet de la station de Val Louron.

Schéma montrant les effets de l'altitude sur les molécules de dioxygène présentes dans l'air

3. **Déduis** en une conséquence de l'effet de l'altitude sur notre organisme.